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Abstract

In this paper we obtain a Kenmotsu-type representation for timelike surfaces with prescribed Gauss
map in the three-dimensional Lorentz–Minkowski spaceL3. We use such representation in order to
classify the complete timelike surfaces with positive constant Gaussian curvature inL3 in terms of
harmonic diffeomorphisms between simply connected Lorentz surfaces and the universal covering of
the de Sitter Space.
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1. Introduction

The existence and uniqueness of a surface inR3 (and also in the rest of Riemannian
space forms) with prescribed Gauss map and a given conformal structure have been subject
of a wide study (see[12,7,2] and references therein). This study has also been extended
to spacelike surfaces inL3. Specifically, Kobayashi[9] and Akutagawa and Nishikawa[1]
obtained Lorentzian versions of the classical Enneper-Weierstrass and Kenmotsu represen-
tations for maximal and constant mean curvature surfaces respectively. On the other hand,
Gálvez et al.[3] have recently obtained a representation for spacelike surfaces inL3 using
the Gauss map and the conformal structure given by the second fundamental form.

Regarding to timelike surfaces inL3, Magid[10] found a Weierstrass representation for
any such surface in terms of its Gauss map and mean curvature, showing that the language
of complex analysis used when the surface can be considered as a Riemann surface is a
useful device but not essential. This will also become plain in Section4 of this paper.

On the other hand, we observe that the study of surfaces with constant Gaussian curvature
in L3 is being developed thanks to its relationship with some classical equations such as
sinh-Gordon, cosh-Gordon, sin-Laplace, and its associated Bäcklund and Darboux trans-
formations (see, for instance,[5,6,11,15]). Thus, one can find new surfaces with constant
Gaussian curvature from a known one. Nevertheless, these results are local (in essence) and
little is known about completeness of the new surfaces.

Our main goal makes use of another well known relationship between surfaces with
constant Gaussian curvature and harmonic maps[8]. First, we give a representation for
timelike surfaces with positive Gaussian curvature in terms of its Gauss map using the
conformal structure induced by its second fundamental form. Thus, we classify the complete
timelike surfaces with positive constant Gaussian curvature by showing the existence of a
bijective correspondence between these immersions and the harmonic diffeomorphisms
from Lorentz surfaces into the universal covering of the de Sitter space.

The paper is organized as follows. After a brief section of preliminaries, we study in
Section3 complete revolution timelike surfaces with positive constant Gaussian curvature.

We devote Section4 to the timelike surfaces with positive Gaussian curvature. Thus,
we find a Kenmotsu-type representation for such surfaces with prescribed Gauss map
(Theorem 2). Moreover, we study under what assumptions a differentiable mapN : M −→
S2

1 from a simply connected Lorentz surfaceM into the de Sitter space determines a timelike
immersionX : M → L3 with Gauss mapN and positive Gaussian curvature (Theorem 3).
As a result of these theorems, we obtain some immediate consequences for the case of
positive constant Gaussian curvature (Corollaries 5 and 6). Next we obtain the classifica-
tion of the complete simply connected timelike immersions with positive constant Gaussian
curvature (Theorem 7).

Finally, Section5 is devoted to study the case of negative Gaussian curvature. Under that
hypothesis, the second fundamental formII defines a Riemannian metric on the surface,
so we will consider it as a Riemann surface with the conformal structure induced byII.
Following a similar sketch to the one in Section4, we get a Kenmotsu-type representation for
such surfaces with prescribed Gauss map (Theorem 9) and study under what assumptions a
differentiable mapN : M −→ S2

1 from a simply connected Riemann surfaceM determines
a timelike immersionX : M → L3 with Gauss mapN and negative Gaussian curvature
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(Theorem 10). To end up, we apply these results to the case of negative constant Gaussian
curvature (Corollaries 11 and 12).

2. Preliminaries

Let L3 be the three-dimensionalLorentz–Minkowski space, that is, the real vector space
R3 endowed with the Lorentzian metric tensor〈, 〉 given by

〈, 〉 = −dx2
1 + dx2

2 + dx2
3,

where (x1, x2, x3) are the canonical coordinates ofR3. Associated to that metric, one has
the cross product of two vectorsu, v ∈ L3 given by

u × v = (−u2v3 + u3v2, u3v1 − u1v3, u1v2 − u2v1),

which is the unique vector such that〈u × v, w〉 = det(u, v, w) for all w ∈ L3, where det
denotes the usual determinant inR3.

An immersionX : M → L3 from a connected surfaceM into L3 is said to be atimelike
surface if the induced metric viaX is a Lorentzian metric onM, which will be also denoted
by 〈, 〉 or by I. Throughout this paper we will assume thatM is orientable, and so we can
choose a unit normal vector fieldN globally defined onM which can be seen as a map from
M into the de Sitter SpaceS2

1 = {x ∈ L3 : 〈x, x〉 = 1}. We will refer toN as theGauss map
of the immersion.

We will denote byII = −〈dN, dX〉 the second fundamental form of the immersionX.
Then the Gaussian curvature ofM is given byK = det(II)/det(I). In particular, note that
K is positive (resp. negative) if, and only if,II is a Lorentzian (resp. Riemannian) metric
on M.

3. Complete revolution surfaces with positive constant Gaussian curvature

In this section we center our attention in the rotation timelike surfaces inL3 with positive
constant Gaussian curvature with respect to a timelike axis. Up to a homothety, we can
assume that its Gaussian curvature is one.

LetX(r, θ) = (r, f (r) cosθ, f (r) sinθ) be a rotation immersion inL3, wheref is a positive
function. Then,X is a timelike immersion with constant Gaussian curvatureK = 1 if and
only if

f ′(r)2 < 1 and f ′′(r) = f (r)(f ′(r)2 − 1)2.

In addition, the induced metric is given byI = (f ′(r)2 − 1) dr2 + f (r)2 dθ2.
Thus, in order to find complete immersions, we consider the initial value problem

f ′′(r) = f (r)(f ′(r)2 − 1)2, f (0) = c1, f ′(0) = c2. (1)
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Let f : (α, ω) → R be the maximal solution to(1) for arbitrary real numbersc1, c2
satisfyingc1 ≥ 1 andc2

1 ≤ 1/(1 − c2
2) < 1 + c2

1. Then, it is easy to check thatf satisfies the
ordinary differential equation

f ′(r)2 = 1 − 1

c0 + f (r)2
(2)

for c0 = 1/(1 − c2
2) − c2

1 ∈ [0, 1).
Now, we observe thatf (r) ≥ √

1 − c0 for all r ∈ (α, ω). In fact, the inequality holds at
r = 0 and ifr0 ∈ (α, ω) satisfiesf (r0) = √

1 − c0 then, from(2), f ′(r0) = 0 and, from(1),
f (r) >

√
1 − c0 in a punctured neighbourhood ofr0 becausef is strictly convex there.

On the other hand, from(2), f ′(r)2 < 1, that is,f (r) ≤ c1 + |r| for all r ∈ (α, ω). Hence,
a standard argument shows that (α, ω) = R, that is,f is well defined in the whole real line.

Thereby, the revolution surfaceX associated with the abovef is a timelike immersion
with constant Gaussian curvatureK = 1 which is well defined for all (r, θ) ∈ R2. To show
the completeness ofX it is sufficient to prove that 1/f (r)2 is bounded and the associated
Riemannian metricIR = (1 − f ′(r)2) dr2 + f (r)2 dθ2 is complete (see[13,14]).

Sincef (r) >
√

1 − c0 the first assertion is clear. For the second one we consider the
new parameterρ such that dρ =

√
(1 − f ′(r)2) dr. Then

ρ(r) = cte +
∫ r

0

1√
c0 + f (s)2

ds and
1√

c0 + f (s)2
≥ 1√

c0 + (c1 + |s|)2
.

Hence,ρ takes values in the whole real line andIR ≥ dρ2 + (1 − c0) dθ2, with (ρ, θ) ∈ R2,
that is,IR is complete.

Theorem 1. There exist infinitely many complete timelike revolution surfaces in L3 with
positive constant Gaussian curvature.

From the above result it is clear the interest of the classification of the complete timelike
immersions inL3 with positive constant Gaussian curvature as we will study in the following
section.

4. Timelike surfaces with positive Gaussian curvature

Throughout this section the concept of Lorentz surface plays an important role. We refer
the reader to[16] to review this subject.

Let X : M → L3 be a timelike surface with positive Gaussian curvatureK in L3, or
equivalently, a timelike surface whose second fundamental formII is a Lorentzian metric
onM. Then we can takeII-null coordinates (u, v) such that the first and second fundamental
forms are given by

I = E du2 + 2F du dv + G dv2, II = 2f du dv, (3)

wheref is a real positive function. Any otherII-null coordinates (˜u, ṽ) are related to (u, v)
by ũ = ũ(u) andṽ = ṽ(v), beingũ′(u) > 0, ṽ′(v) > 0.
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Now, the Weingarten equations become

Nu = ∂N

∂u
= f

EG − F2 (FXu − EXv),

Nv = ∂N

∂v
= f

EG − F2 (−GXu + FXv). (4)

From(3), the Gaussian curvature and the Gauss map ofM can be written as

K = −f 2

EG − F2 and N = Xu × Xv√
F2 − EG

,

respectively. Hence, thanks to the Weingarten equation (4) we obtain

Xu = −1√
K

N × Nu, Xv = 1√
K

N × Nv, (5)

that is, the immersion can be recovered in terms of its Gaussian curvature and its Gauss
map. Even more, the Gaussian curvature is determined, up to multiplications by positive
constants, by the Gauss map. In fact, using(5) we obtain fromXuv − Xvu = 0 that

N × (KuNu + KvNv − 4KNuv) = 0, (6)

and so

(logK)uNu + (logK)vNv = 4(Nuv − 〈NuvN〉N). (7)

By taking the inner product of both terms in(7) with Xu andXv respectively and using
again(5), one easily gets

−(logK)v = 4
det(N, Nuv, Nu)

det(N, Nu, Nv)
, −(logK)u = 4

det(N, Nuv, Nv)

det(N, Nu, Nv)

as we had announced.
In the following theorem we summarize all the comments above jointly with more

geometric information about the timelike surface.

Theorem 2. Let X : M −→ L3 be a timelike immersion with positive Gaussian curvature
K, N its Gauss map and (u, v) II-null coordinates on M. Then X can be recovered in terms
of K and N as

Xu = −1√
K

N × Nu, Xv = 1√
K

N × Nv, (8)

and the Gaussian curvature is determined, up to multiplications by positive constants, by
the Gauss map in the following way:

− (logK)u = 4
det(N, Nuv, Nv)

det(N, Nu, Nv)
, −(logK)v = 4

det(N, Nuv, Nu)

det(N, Nu, Nv)
. (9)

Moreover, the first and second fundamental forms of the immersion are given by
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I = 1

K
(−〈Nu, Nu〉 du2 + 2〈Nu, Nv〉 du dv − 〈Nv, Nv〉dv2),

II = 2√
K

det(N, Nu, Nv) du dv (10)

and its mean curvature by

H =
√

K
〈Nu, Nv〉

det(N, Nu, Nv)
. (11)

Proof. The expressions for the derivatives ofX and logK have already been obtained. As
regard to(10), it follows easily from(5). Finally, (11) can be obtained using(10) and the
fact thatH = −Ff/(EG − F2), K = −f 2/(EG − F2). �

In the following theorem we show under what assumptions a mapN : M −→ S2
1 from

a simply connected Lorentz surfaceM determines a timelike immersionX : M → L3 with
Gauss mapN.

Theorem 3. Let M be a simply connected Lorentz surface and N : M −→ S2
1 a differen-

tiable map. Then, there exists a timelike immersion X : M −→ L3 with Gauss map N and
such that the structure given by its second fundamental form is the one of M if and only if

det(N, Nu, Nv) > 0 (12)

and(
det(N, Nuv, Nv)

det(N, Nu, Nv)

)
v

=
(

det(N, Nuv, Nu)

det(N, Nu, Nv)

)
u

. (13)

In this case, the immersion has positive Gaussian curvature, is unique (up to similarity
transformations of L3) and can be calculated as in Theorem 2.

Proof. If X : M −→ L3 is a timelike immersion with Gauss mapN such thatII is a
Lorentzian metric onM, the direct implication follows fromTheorem 2. The converse
implication is a straightforward computation, bearing in mind that(12) says thatII is a
Lorentzian metric onM, (13) is the necessary condition for the existence ofK and both of
them are the integrability conditions of the immersion.

Finally, if X andY are two timelike immersions as above with Gaussian curvaturesKX

andKY respectively, then from(9) we have thatKX = λKY for a positive real constantλ,
and so it follows from(8) thatY = √

λX + V , V ∈ L3. �

Thanks to the above theorem, we are able to get the following uniqueness result for time-
like immersions with positive Gaussian curvature. The concept of conformal equivalence
between Lorentz surfaces herein coincides, in essence, with the corresponding one between
Riemann surfaces, and can be found, for example, in[16]. Anyway, it is worth pointing
out that while in the case of simply connected Riemann surfaces there exist three classes
of equivalence (C, D andS2), in the case of simply connected Lorentz surfaces there exist
infinitely many ones.
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Proposition 4. Let M be a simply connected Lorentz surface and X1, X2 : M −→ L3 two
timelike immersions with positive Gaussian curvatures K1, K2 and Gauss maps N1, N2 :
M −→ S2

1, respectively. Then the following conditions are equivalent:

(i) There exist a conformal equivalence ϕ on M and an isometry f of L3 such that f ◦ X1 =
X2 ◦ ϕ.

(ii) There exist a conformal equivalence ϕ on M and an isometry i of S2
1 such that i ◦ N1 =

N2 ◦ ϕ and K1 = K2 ◦ ϕ.

Proof. First, let us suppose thatf ◦ X1 = X2 ◦ ϕ, where f and ϕ are as in the state-
ment. Since every isometry preserves the Gaussian curvature, it follows thatK1 = K2 ◦ ϕ.
Moreover, by takingi as the restriction of df to S2

1 it is easy to check thati ◦ N1 =
N2 ◦ ϕ.

Conversely, given an isometryi of S2
1, we can considerf ′ as the extension ofi to an isom-

etry of L3. If we takeX′
1 = f ′ ◦ X1, (ii) says thatN ′

1 = N2 ◦ ϕ andK′
1 = K2◦, ϕ, where

N ′
1 andK′

1 stand for the Gauss map and the Gaussian curvature ofX′
1. Now, Theorem 2

assures that d(X′
1 − X2 ◦ ϕ) = 0 and soX′

1 = X2 ◦ ϕ + V , V ∈ L3, which ends the
proof. �

4.1. Positive constant Gaussian curvature surfaces

First, let us recall that given a Lorentz surfaceS with metricτ, (u, v) null coordinates for
τ andϕ : S −→ S2

1 a differentiable map, thenϕ is harmonic if and only ifϕuv = λ ϕ for a
certain functionλ (see, for instance,[4,8] or [16]). Moreover, ifϕ is a local diffeomorphism
thenϕ is harmonic if and only if

〈ϕuv, ϕu〉 = 0 = 〈ϕuv, ϕv〉 ⇔ 〈ϕu, ϕu〉v = 0 = 〈ϕv, ϕv〉u.
Now, letX : M −→ L3 be a timelike immersion with positive constant Gaussian curva-

ture and let us considerII-null coordinates (u, v) on M. Then(6) says thatN × Nuv = 0,
and so the Gauss mapN is harmonic intoS2

1. Conversely, ifN is harmonic it follows from
(9) thatK is constant. So we have (see also[8]) the following corollary.

Corollary 5. Let X : M −→ L3 be a timelike immersion with positive Gaussian curvature
K. Then K is constant if, and only if, its Gauss map is harmonic for the second fundamental
form.

In the case whenM is a simply connected Lorentz surface,Theorem 3allows us to obtain
the following.

Corollary 6. Given a harmonic local diffeomorphism N : M −→ S2
1 preserving the ori-

entation from a simply connected Lorentz surface M and a positive constant K, there exists
a unique timelike immersion (up to translations) with positive constant Gaussian curvature
K, Gauss map N, and such that the structure induced by the second fundamental form is the
one given on M.
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Proof. In fact, note that the harmonicity ofN implies that(13) holds. On the other hand,
sinceN is a local diffeomorphism preserving the orientation, it follows that(12)also holds.
�

To finish this section, we are going to establish a classification result for complete time-
like surfaces with positive constant Gaussian curvatureK in terms of suitable harmonic
maps.

Let us denote byB the set of harmonic diffeomorphisms preserving the orientation

from any simply connected Lorentz surface onto the universal coveringS̃2
1 of S2

1, where

two harmonic diffeomorphismshi : Mi −→ S̃2
1, i = 1,2, will be identified if there exist a

conformal equivalenceϕ : M1 −→ M2 and an isometryi of S̃2
1 such thath1 = i ◦ h2 ◦ ϕ.

On the other hand,AK will stand for the set of complete timelike immersions with
constant Gaussian curvatureK > 0 from any simply connected Lorentz surface intoL3,
where we will identify two immersionsXi : Mi −→ L3, i = 1, 2, if there exist a conformal
equivalenceϕ : (M1, II) −→ (M2, II) and an isometryf of L3 such thatX2 ◦ ϕ = f ◦ X1
(i.e., if X1 andX2 arecongruent).

Then we have the following theorem.

Theorem 7. There exists a bijective correspondence between AK and B for all K > 0.

Proof. We will suppose, without loss of generality, thatK = 1.
Let us takeX ∈ A1, X : M −→ L3, and (u, v) II-null coordinates onM. Then the (2, 0)

and (0, 2) parts of the metricI satisfy (I(2,0))v = 0 = (I(0,2))u, which implies that the identity
mapIdM : (M, II) −→ (M, I) is a harmonic diffeomorphism.

Since (M, I) is complete, simply connected and has Gaussian curvatureK = 1, there

exists an isometryi : (M, I) −→ S̃2
1. Hence,i ◦ IdM is a harmonic diffeomorphism uniquely

determined up to isometries of̃S2
1. We will denote by	(X) = [i ◦ IdM ] the class ofi ◦ IdM

in B. Then we define	 : A1 −→ B given by	([X]) = 	(X).
First, let us see that, indeed,	̄ is a map. LetXi : Mi −→ L3, i = 1, 2, be two congruent

complete timelike immersions, that is, there exist a conformal equivalenceϕ : (M1, II) −→
(M2, II) and an isometryf of L3 such thatX2 ◦ ϕ = f ◦ X1. If i : (M2, I) −→ S̃2

1 is an isom-
etry theni ◦ f ◦ IdM1 = i ◦ IdM2 ◦ ϕ (wherep andXi(p) are identified,i = 1, 2). Hence,
	(X1) = 	(X2).

To see that	 is injective, let us takeXi : Mi −→ L3, i = 1, 2, two complete time-
like immersions such that	(X1) = 	(X2). Then there exist a conformal equivalence
ϕ : (M1, II) −→ (M2, II) and an isometryi : (M1, I) −→ (M2, I) such thatIdM1 = i−1 ◦
IdM2 ◦ ϕ. Consequentlyi = ϕ andX1, X2 ◦ i are two timelike immersions from (M1, I)
into L3 with the same induced metric, the same conformal structure for the second funda-
mental form and the same Gaussian curvature. Therefore, Gauss’ egregium theorem assures
thatX1 andX2 ◦ i have the same second fundamental form, and so they coincide up to an
isometry ofL3, whence [X1] = [X2].

Finally, let us check that̄	 is onto. To see that, let us take a harmonic diffeomorphism

h : M −→ S̃2
1 preserving the orientation from a simply connected Lorentz surfaceM onto
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S̃2
1, and let us consider the composition maph̃ = π ◦ h : M −→ S2

1, whereπ : S̃2
1 −→ S2

1 is
the canonical projection. Observe thath̃ is also harmonic and so, fromTheorem 3, there ex-
ists a timelike immersionY : M −→ S2

1 with Gauss map̃h and constant Gaussian curvature
K = 1. On the other hand, note that the identity mapIdM : (M, IIY ) −→ (M, IY ) is har-
monic (where, for instance,IY stands for the first fundamental form ofY) and, sinceM is sim-
ply connected and (M, IY ) has constant Gaussian curvatureK = 1, there exists an isometric

immersioni : (M, IY ) −→ S̃2
1. Thus, as the composition mapĩ = π ◦ i : (M, IY ) −→ S2

1
is also an isometric immersion,Theorem 3says that there exists a timelike immersion
X : M −→ L3 with Gauss map̃N = ĩ ◦ IdM : (M, IIY ) −→ S2

1 and constant Gaussian cur-
vature 1.

Observe that the third fundamental form ofX, IIIX, is nothing but the pullback bỹi of
the standard metric ofS2

1, whenceIIIX = IY . Therefore, from(10),

−〈h̃u, h̃u〉 = 〈Ñu, Ñu〉, 〈h̃u, h̃v〉 = 〈Ñu, Ñv〉, −〈h̃v, h̃v〉 = 〈Ñv, Ñv〉

and we have thatIX = IIIY , and also thatIIX = IIY , because det(h̃, h̃u, h̃v) det(Ñ, Ñu, Ñv).

Finally, sinceIX = 〈dh̃, dh̃〉 = 〈dh, dh〉 is the pullback byh of the standard metric of̃S2
1,

it follows thatX is complete, that is,X ∈ A1, which jointly with 	̄(X) = [h] ends up the
proof. �

Remark 8. Every harmonic diffeomorphism intoS2
1 can be lifted to one intõS2

1 and vice
versa. Moreover, every Lorentz surface is locally conformally equivalent to a domain ofL2.
Therefore, the study of Gu[4] on the harmonic maps fromL2 into S2

1 and the above results
can be used for the construction of complete and non complete timelike immersions with
positive constant Gaussian curvature.

5. Timelike surfaces with negative Gaussian curvature

Let X : M −→ L3 be a timelike surface with negative Gaussian curvatureK in L3, or
equivalently, a timelike surface whose second fundamental form is a Riemannian metric
on M. Thus, from now onM will be considered as a Riemann surface with the conformal
structure induced byII.

If z = u + iv is a conformal parameter, the first and second fundamental forms are given
by

I = E du2 + 2F du dv + G dv2, II = e(du2 + dv2),

wheree is a positive real function.
Then, the Weingarten equations become

Nu = e

EG − F2 (−GXu + FXv), Nv = e

EG − F2 (FXu − EXv), (14)
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whereas the Gaussian curvature and the Gauss map ofM are given by

K = e2

EG − F2 and N = Xu × Xv√
F2 − EG

,

respectively.
Now, using the Weingarten equation (14) we get

Xu = −1√−K
N × Nv, Xv = 1√−K

N × Nu,

or equivalently

Xz = −i√−K
N × Nz, (15)

and so the immersion can be recovered in terms of the Gaussian curvature and the Gauss
map.

As in the case of positive Gaussian curvature, the Gauss map determines, up to multipli-
cations by positive constants, the Gaussian curvature of the surface. In fact, using(15)one
gets fromXzz̄ − Xz̄z = 0 that

N × (KzNz + Kz̄Nz̄ − 4KNzz̄) = 0, (16)

whence

(logK)zNz + (logK)z̄Nz̄ = 4(Nzz̄ − 〈Nzz̄, N〉N). (17)

Now, by taking the inner product of both terms in(17) by Xz and using again(15), we
finally have

−(logK)z = 4
det(N, Nz̄, Nzz̄)

det(N, Nz, Nz̄)
.

We summarize all the comments above jointly with more geometric information about
the surface in the following theorem.

Theorem 9. Let X : M −→ L3 be a timelike immersion with negative Gaussian curvature
K, N its Gauss map and z = u + iv a conformal parameter on M. Then X can be recovered
in terms of K and N as

Xz = −i√−K
N × Nz, (18)

and the Gaussian curvature is determined, up to multiplications by positive constants, by
the Gauss map in the following way:

− (logK)z = 4
det(N, Nz̄, Nzz̄)

det(N, Nz, Nz̄)
. (19)
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Moreover, the first and second fundamental forms of the immersion are given by

I = 1

K
(−〈Nz, Nz〉 dz2 + 2〈Nz, Nz̄〉 dz dz̄ − 〈Nz̄, Nz̄〉 dz̄2),

II = −2i√−K
det(N, Nz, Nz̄) dz dz̄ (20)

and its mean curvature by

H = 2i
√−K

〈Nz, Nz̄〉
det(N, Nz, Nz̄)

. (21)

Proof. The expressions forXz and (logK)z have already been obtained. Eq.(20) follows
easily from(15). Finally, (21) can be obtained using(20) and thatH = e(E + G)/(EG −
F2), K = e2/(EG − F2). �

In the following theorem we show under what assumptions a mapN : M −→ S2
1 from

a simply connected Riemann surfaceM determines a timelike immersionX : M −→ L3

with Gauss mapN.

Theorem 10. Let M be a simply connected Riemann surface and N : M −→ S2
1 a differen-

tiable map. Then, there exists a timelike immersion X : M −→ L3 with Gauss map N and
such that the structure given by its second fundamental form is the one of M if and only if

− idet(N, Nz, Nz̄) > 0 (22)

−
(

det(N, Nz̄, Nzz̄)

det(N, Nz, Nz̄)

)
z̄

=
(

det(N, Nz, Nzz̄)

det(N, Nz, Nz̄)

)
z

. (23)

In this case, the immersion is unique (up to similarity transformations of L3) and can be
calculated as in Theorem 9.

Proof. If X : M −→ L3 is a timelike immersion with Gauss mapN such thatII is a Riemann
metric onM, the direct implication follows fromTheorem 9. The converse implication is a
straightforward computation, bearing in mind that(22)says thatII is a Riemannian metric
on M and(23) is the integrability condition forK.

Finally, if X andY are two timelike immersions as above with Gaussian curvaturesKX

andKY respectively, then from(19)we have thatKX = λKY for a positive real constantλ,
and hence, using(18), we have thatY = √

λX + V , V ∈ L3. �

5.1. Negative constant Gaussian curvature surfaces

Let X : M −→ L3 be a timelike immersion with negative constant Gaussian curvature.
If we consider onM a conformal parameterz = u + iv, (16) says thatN × Nzz̄ = 0, and
so the Gauss mapN is harmonic intoS2

1. Conversely, ifN is harmonic we get from(19)that
K is constant. Thus, we can state (see[8]) the following corollary.
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Corollary 11. LetX : M −→ L3 be a timelike immersion with negative Gaussian curvature
K. Then K is constant if, and only if, its Gauss map is harmonic for the second fundamental
form.

In the case whenM is a simply connected Riemann surface,Theorem 10allows us to
obtain the following corollary.

Corollary 12. Given a harmonic local diffeomorphism N : M −→ S2
1 preserving the

orientation from a simply connected Riemann surface M and a negative constant K, there
exists a unique timelike immersion (up to translations) with negative constant Gaussian
curvature K, Gauss map N and such that the structure induced by the second fundamental
form is the one given on M.

Proof. This follows immediately by observing that the harmonicity ofN implies that(23)
holds. On the other hand, sinceN is a local diffeomorphism preserving the orientation, it
follows that(22)also holds. �
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