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Abstract

In this paper we obtain a Kenmotsu-type representation for timelike surfaces with prescribed Gauss
map in the three-dimensional Lorentz—Minkowski sphéeWe use such representation in order to
classify the complete timelike surfaces with positive constant Gaussian curvalutéririerms of
harmonic diffeomorphisms between simply connected Lorentz surfaces and the universal covering of
the de Sitter Space.
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1. Introduction

The existence and uniqueness of a surfacR3r(and also in the rest of Riemannian
space forms) with prescribed Gauss map and a given conformal structure have been subject
of a wide study (se@l2,7,2] and references therein). This study has also been extended
to spacelike surfaces ib®. Specifically, KobayasHP] and Akutagawa and Nishikavja]
obtained Lorentzian versions of the classical Enneper-Weierstrass and Kenmotsu represen-
tations for maximal and constant mean curvature surfaces respectively. On the other hand,
Galvez et al[3] have recently obtained a representation for spacelike surfageslising
the Gauss map and the conformal structure given by the second fundamental form.

Regarding to timelike surfacesIr?, Magid [10] found a Weierstrass representation for
any such surface in terms of its Gauss map and mean curvature, showing that the language
of complex analysis used when the surface can be considered as a Riemann surface is a
useful device but not essential. This will also become plain in Sedtifrthis paper.

On the other hand, we observe that the study of surfaces with constant Gaussian curvature
in L3 is being developed thanks to its relationship with some classical equations such as
sinh-Gordon, cosh-Gordon, sin-Laplace, and its associaée#lénd and Darboux trans-
formations (see, for instancgs,6,11,15). Thus, one can find new surfaces with constant
Gaussian curvature from a known one. Nevertheless, these results are local (in essence) and
little is known about completeness of the new surfaces.

Our main goal makes use of another well known relationship between surfaces with
constant Gaussian curvature and harmonic nj8hsFirst, we give a representation for
timelike surfaces with positive Gaussian curvature in terms of its Gauss map using the
conformal structure induced by its second fundamental form. Thus, we classify the complete
timelike surfaces with positive constant Gaussian curvature by showing the existence of a
bijective correspondence between these immersions and the harmonic diffeomorphisms
from Lorentz surfaces into the universal covering of the de Sitter space.

The paper is organized as follows. After a brief section of preliminaries, we study in
Section3 complete revolution timelike surfaces with positive constant Gaussian curvature.

We devote Sectiod to the timelike surfaces with positive Gaussian curvature. Thus,
we find a Kenmotsu-type representation for such surfaces with prescribed Gauss map
(Theorem 2. Moreover, we study under what assumptions a differentiablexap/ —

S% from a simply connected Lorentz surfadento the de Sitter space determines atimelike
immersionX : M — L3 with Gauss map/ and positive Gaussian curvatufEheorem 3.

As a result of these theorems, we obtain some immediate consequences for the case of
positive constant Gaussian curvatu@o(ollaries 5 and 6 Next we obtain the classifica-

tion of the complete simply connected timelike immersions with positive constant Gaussian
curvature Theorem 7.

Finally, Sectiorb is devoted to study the case of negative Gaussian curvature. Under that
hypothesis, the second fundamental fakhdefines a Riemannian metric on the surface,
so we will consider it as a Riemann surface with the conformal structure inducétl by
Following a similar sketch to the one in Sectifnwve get a Kenmotsu-type representation for
such surfaces with prescribed Gauss nidpprem 9and study under what assumptions a
differentiable mapVv : M — Sf from a simply connected Riemann surfadé¢eletermines
a timelike immersionX : M — L3 with Gauss mapV and negative Gaussian curvature
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(Theorem 19 To end up, we apply these results to the case of negative constant Gaussian
curvature Corollaries 11 and 12

2. Preliminaries

Let L3 be the three-dimensionabrentz—Minkowski space, that is, the real vector space
R3 endowed with the Lorentzian metric tengof given by

() = —dx? + dx3 + dx3,

where 1, x2, x3) are the canonical coordinatesRf. Associated to that metric, one has
the cross product of two vectoss v € L3 given by

U X v = (—u2v3+ uzvy, uzv1 — UIV3, U1V2 — U2V1),

which is the unique vector such that x v, w) = det, v, w) for all w € L3, where det
denotes the usual determinantRA.

An immersionX : M — L3 from a connected surfadé into L2 is said to be aimelike
surface if the induced metric vi& is a Lorentzian metric oi, which will be also denoted
by (, ) or by I. Throughout this paper we will assume tits orientable, and so we can
choose a unit normal vector fieMiglobally defined o/ which can be seen as a map from
M into the de Sitter Spac®? = {x € L3: (x, x) = 1}. We will refer toN as theGauss map
of the immersion.

We will denote byll = —(dN, dX) the second fundamental form of the immersian
Then the Gaussian curvature Mfis given byK = det(/I)/det(l). In particular, note that
K is positive (resp. negative) if, and only if] is a Lorentzian (resp. Riemannian) metric
onM.

3. Complete revolution surfaces with positive constant Gaussian curvature

In this section we center our attention in the rotation timelike surface3 with positive
constant Gaussian curvature with respect to a timelike axis. Up to a homothety, we can
assume that its Gaussian curvature is one.

LetX(r, 6) = (r, f(r) cosh, f(r) sind) be arotation immersion b3, wherefis a positive
function. Then X is a timelike immersion with constant Gaussian curvakire 1 if and
only if

F? <1 and f/(r) = f()(f'(r)? — 1~

In addition, the induced metric is given By= (f/(r)? — 1) &2 + f(r)2 do2.
Thus, in order to find complete immersions, we consider the initial value problem

)= O )P =12, fO) =c1.  f(0)=ca. (1)
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Let f: (o, ) = R be the maximal solution t¢l) for arbitrary real numbersy, c2
satisfyinge; > 1andc? < 1/(1 — ¢3) < 1+ ¢2. Then, itis easy to check thesatisfies the
ordinary differential equation

1
co+ f(r)?

forco=1/(1—c3) —c? € [0, 1).

Now, we observe thaf(r) > /1 — cg for all r € (o, w). In fact, the inequality holds at
r = 0and ifrg € (o, w) satisfiesf (rg) = +/1 — co then, from(2), f'(ro) = 0 and, from(1),
f(r) > /1= cg in a punctured neighbourhood af becausef is strictly convex there.

On the other hand, froif2), () < 1, thatis,f(r) < c1 + |r| forallr € (o, w). Hence,
a standard argument shows that®) = R, that is,fis well defined in the whole real line.

Thereby, the revolution surfacé associated with the aboyas a timelike immersion
with constant Gaussian curvatuke= 1 which is well defined for alli 6) € R2. To show
the completeness of it is sufficient to prove that Af(r)? is bounded and the associated
Riemannian metridg = (1 — f'(r)%) dr? 4 f(r)?>do? is complete (sefl3,14).

Since f(r) > /1 — cg the first assertion is clear. For the second one we consider the

new parametep such that @ = /(1 — f/(r)2) dr. Then

f)P=1- )

P(r)=cte+/r¥ds and ! > ! )
0 Veo+ f(s)? Veo+ f(8)2 T Veo+ (c1+ Is])?

Hence p takes values in the whole real line ahgl> dp? + (1 — cg) d92, with (p, 6) € R?,
that is, I is complete.

Theorem 1. There exist infinitely many complete timelike revolution surfaces in L3 with
positive constant Gaussian curvature.

From the above result itis clear the interest of the classification of the complete timelike
immersions irL.2 with positive constant Gaussian curvature as we will study in the following
section.

4. Timelike surfaces with positive Gaussian curvature

Throughout this section the concept of Lorentz surface plays an important role. We refer
the reader t¢16] to review this subject.

Let X : M — L3 be a timelike surface with positive Gaussian curvatkirm L2, or
equivalently, a timelike surface whose second fundamental férima Lorentzian metric
onM. Then we can také/-null coordinatesy, v) such that the first and second fundamental
forms are given by

[ = Edu® + 2F dudv + G dv?, 11 = 2f du dv, (3)

wherefis a real positive function. Any oth&d-null coordinatesy; v) are related tou, v)
by & = &t(«) andv = v(v), beingu’(u) > 0,7'(v) > O.
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Now, the Weingarten equations become

oN f
N, = - = W(FXM — EX,),
oN f
Ny = r = m(—cxu + FX,). 4)

From (3), the Gaussian curvature and the Gauss may oén be written as

_f2 Xu X Xv
K=—— and N= ——,
EG — F? F?—EG
respectively. Hence, thanks to the Weingarten equation (4) we obtain
-1 1
Xu:ﬁNXNM, Xv:ﬁNXst (5)

that is, the immersion can be recovered in terms of its Gaussian curvature and its Gauss
map. Even more, the Gaussian curvature is determined, up to multiplications by positive
constants, by the Gauss map. In fact, ugisigve obtain fromX,,, — X,,, = 0 that

N x (KuNy + KyNy — 4KNyy) = 0, (6)
and so
(IOg K)uNu + (IOg K)va = 4(Nuv - <Nqu>N)- (7)

By taking the inner product of both terms (i) with X, and X, respectively and using
again(5), one easily gets

detw, Ny, Ny)
det(v, Ny, N,) ’

detN, Nyy, Ny)

—(logK), = 4 det(V, Ny, Ny)

—(logK), =4

as we had announced.
In the following theorem we summarize all the comments above jointly with more
geometric information about the timelike surface.

Theorem 2. Let X : M —> L2 be a timelike immersion with positive Gaussian curvature
K, N its Gauss map and (u, v) II-null coordinates on M. Then X can be recovered in terms
of K and N as

-1 1
Xu:ﬁNxNu, Xv:ﬁNxNv, (8)

and the Gaussian curvature is determined, up to multiplications by positive constants, by
the Gauss map in the following way:

det(N, Ny, Ny) det(N, Ny, Ny)
detV, N, N,)’ detV, N,, N,)

Moreover, the first and second fundamental forms of the immersion are given by

— (logK), =4 —(logK), =4 9)
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1
1= —(=(Nu, Nu) du? + 2(N,, Ny) du dv — (N, N,)dv?),
2
11 = ﬁ detv, N, N,) du dv (20)
and its mean curvature by

detV, N, Np)

Proof. The expressions for the derivativesXéind logk have already been obtained. As
regard to(10), it follows easily from(5). Finally, (11) can be obtained usin@.0) and the
factthatH = —Ff/(EG — F?), K = — f?/(EG — F?). O

In the following theorem we show under what assumptions a Mmap/ — Sifrom
a simply connected Lorentz surfakedetermines a timelike immersion: M — L° with
Gauss map.

Theorem 3. Let M be a simply connected Lorentz surface and N : M —> S% a differen-
tiable map. Then, there exists a timelike immersion X : M —> L3 with Gauss map N and
such that the structure given by its second fundamental form is the one of M if and only if

det®v, Ny, Ny) > 0 (12)

and

(det(]vv Nle» NU)) _ (det(]vv NLllh Nu)>
v u

13
det(V, Ny, Ny) det(V, N, Ny) (13)

In this case, the immersion has positive Gaussian curvature, is unique (up to similarity
transformations of L3) and can be calculated as in Theorem 2

Proof. If X: M —> L3 is a timelike immersion with Gauss mayp such that// is a
Lorentzian metric onV, the direct implication follows fronTheorem 2 The converse
implication is a straightforward computation, bearing in mind tfi&) says that// is a
Lorentzian metric o, (13)is the necessary condition for the existenc&@ind both of
them are the integrability conditions of the immersion.

Finally, if X andY are two timelike immersions as above with Gaussian curvatkises
and Ky respectively, then fron®) we have thax = ALKy for a positive real constant,
and so it follows from@8) thaty = VAX +V,V e L3. O

Thanks to the above theorem, we are able to get the following uniqueness result for time-
like immersions with positive Gaussian curvature. The concept of conformal equivalence
between Lorentz surfaces herein coincides, in essence, with the corresponding one between
Riemann surfaces, and can be found, for examplgl6h Anyway, it is worth pointing
out that while in the case of simply connected Riemann surfaces there exist three classes
of equivalence, D andS?), in the case of simply connected Lorentz surfaces there exist
infinitely many ones.
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Proposition 4. Let M be a simply connected Lorentz surface and X1, X2 : M —> L3 two
timelike immersions with positive Gaussian curvatures K1, Ko and Gauss maps N1, N2 :
M — S%, respectively. Then the following conditions are equivalent:

(i) There exist a conformal equivalence ¢ on M and an isometry fof L such that f o X1 =
X2 0.

(ii)y There exist a conformal equivalence ¢ on M and an isometry i 0fS% suchthati o N1 =
Nzog@and K1 = K2 0 ¢.

Proof. First, let us suppose thgto X; = X, o ¢, wheref and ¢ are as in the state-
ment. Since every isometry preserves the Gaussian curvature, it followsthatk o ¢.
Moreover, by taking as the restriction of d to S% it is easy to check thato N1 =
N2 o .

Conversely, given an isometipf S2, we can considef’ as the extension éto an isom-
etry of L3. If we take X} = f’ o X1, (ii) says thatN] = Nz o ¢ andK} = Kzo0, ¢, where
Nj and K stand for the Gauss map and the Gaussian curvatukg .olow, Theorem 2
assures that &} — X20¢9) =0 and soX} = X209+ V, V e L® which ends the
proof. [

4.1. Positive constant Gaussian curvature surfaces

First, let us recall that given a Lorentz surfaoeith metricz, (i, v) null coordinates for
randg : S —> S? a differentiable map, thep is harmonic if and only ifs,, = A ¢ for a
certain functiori (see, for instancé4,8] or [16]). Moreover, ifp is a local diffeomorphism
theng is harmonic if and only if

(Puvs 0u) = 0= {Quv, v) & (Pu> Pu)v = 0= (@u, Pv)u.

Now, letX : M —> L3 be a timelike immersion with positive constant Gaussian curva-
ture and let us considéf-null coordinatesiy, v) on M. Then(6) says thatvV x N,, = 0,
and so the Gauss mapis harmonic int(S% Conversely, itV is harmonic it follows from
(9) thatK is constant. So we have (see al8p the following corollary.

Corollary 5. Let X : M —> L3 be a timelike immersion with positive Gaussian curvature
K. Then K is constant if, and only if, its Gauss map is harmonic for the second fundamental
form.

In the case whe is a simply connected Lorentz surfadéeorem Jallows us to obtain
the following.

Corollary 6. Given a harmonic local diffeomorphism N : M — S% preserving the ori-
entation from a simply connected Lorentz surface M and a positive constant K, there exists
a unique timelike immersion (up to translations) with positive constant Gaussian curvature
K, Gauss map N, and such that the structure induced by the second fundamental form is the
one given on M.
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Proof. In fact, note that the harmonicity &f implies that(13) holds. On the other hand,
sinceN is a local diffeomorphism preserving the orientation, it follows (i) also holds.
O

To finish this section, we are going to establish a classification result for complete time-
like surfaces with positive constant Gaussian curvakiia terms of suitable harmonic
maps.

Let us denote by3 the set of harmonic diffeomorphisms preserving the orientation

from any simply connected Lorentz surface onto the universal covsﬁrtg‘ S2, where
two harmonic diffeomorphisms; : M; — S2, i = 1,2, will be identified if there exist a

conformal equivalence : M1 — M> and an isometry of Sf such thatiy =iohso¢.

On the other handdk will stand for the set of complete timelike immersions with
constant Gaussian curvatuke> 0 from any simply connected Lorentz surface iiit§,
where we will identify two immersiong; : M; — L3,i = 1, 2, if there exist a conformal
equivalencey : (M1, II) —> (M>, I) and an isometryof L2 such thatX, 0 ¢ = f o X1
(i.e., if X1 and X arecongruent).

Then we have the following theorem.

Theorem 7. There exists a bijective correspondence between Ak and B for all K > 0.

Proof. We will suppose, without loss of generality, thét= 1.

LetustakeX € Ay, X : M —> L3, and {, v) ZI-null coordinates oM. Then the (20)
and (Q 2) parts of the metri¢satisfy (¢9), = 0 = (1©-2)),, whichimplies that the identity
mapldy : (M, 1) — (M, I) is a harmonic diffeomorphism.

Since (, I) is complete, simply connected and has Gaussian curvaturel, there
existsanisometry: (M, I) — SE. Hencej o Idy, is aharmonic diffeomorphism uniquely

determined up to isometries Sf We will denote byd(X) = [i o Idy] the class of o Idy,
in B. Then we defing : A3 — B given by®([X]) = ®(X).

First, let us see that, indeedl,is a map. LetX; : M; —> L3,i = 1, 2, be two congruent
complete timelike immersions, that is, there exist a conformal equivaien¢®y, 17) —
(M2, IT) and anisometrgof L3suchtha o ¢ = f o X1.1fi : (M2, I) — SZisanisom-
etry theni o f o Idy, =i o Idy, o ¢ (Wherep andX;(p) are identified; = 1, 2). Hence,
P(X1) = P(X2).

To see that® is injective, let us takeX; : M; — L3, i = 1,2, two complete time-
like immersions such tha®(X1) = ®(X32). Then there exist a conformal equivalence
@ : (My, II) —> (Mo, IT) and an isometry : (M1, I) —> (M2, I) such thatidy, =i~to
Idy, o . Consequently = ¢ and X1, X2 o are two timelike immersions fromMy, 1)
into L2 with the same induced metric, the same conformal structure for the second funda-
mental form and the same Gaussian curvature. Therefore, Gauss’ egregium theorem assures
that X; and X o i have the same second fundamental form, and so they coincide up to an
isometry ofL.3, whence K1] = [X2].

Finally, let us check tha® is onto. To see that, let us take a harmonic diffeomorphism

h:M— Sf preserving the orientation from a simply connected Lorentz suffaoato
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S2, and let us consider the composition niag: 7 o h : M —> S2, wherer 82 — $%is
the canonical projection. Observe thas also harmonic and so, fro'rﬁheorem 3there ex-
ists atimelike immersiol : M — 52 with Gauss map and constant Gaussian curvature
K = 1. On the other hand, note that the identity nidyy : (M, Ily) — (M, Iy) is har-
monic (where, for instancéy stands for the first fundamental formXfand, sincé/ is sim-
ply connected and\{, Iy) has constant Gaussian curvatéire= 1, there exists an isometric
immersioni : (M, Iy) —> S%. Thus, as the composition map= 7 oi : (M, Iy) —> S%
is also an isometric immersioifheorem 3says that there exists a timelike immersion
X : M — L3with Gauss mapyV =i o Idy : (M, IIy) — S? and constant Gaussian cur-
vature 1.

Observe that the third fundamental formXgf/17x, is nothing but the pullback biof
the standard metric &2, whencelllx = Iy. Therefore, fron{10),

_(ilua hu> = (Nua Nu>, (ilu»hv> = (Nua Nu>v _U:lvvhv) = (Nva Nv>

andwe have thdty = /11y, and alsothatly = IIy, because det( h,, h,) detV, N,, Ny).

Finally, sincelx = (di, di) = (dh, dh) is the pullback by of the standard metric &2,
it follows thatX is complete, that isX € Aj, which jointly with ®(X) = [k] ends up the
proof. O

Remark 8. Every harmonic diffeomorphism int§% can be lifted to one int82 and vice
versa. Moreover, every Lorentz surface is locally conformally equivalent to a domfn of
Therefore, the study of G4] on the harmonic maps froli? into S% and the above results

can be used for the construction of complete and non complete timelike immersions with
positive constant Gaussian curvature.

5. Timelike surfaces with negative Gaussian curvature

Let X : M —> L2 be a timelike surface with negative Gaussian curvakine L2, or
equivalently, a timelike surface whose second fundamental form is a Riemannian metric
on M. Thus, from now oM will be considered as a Riemann surface with the conformal
structure induced by!.

If z = u + ivis a conformal parameter, the first and second fundamental forms are given

by
[ = Edu® + 2F du dv + G dv?, 11 = e(di® + dv?),

wheree is a positive real function.
Then, the Weingarten equations become

N, = ( GX, +FXv) Ny = (FX EXU)a (14)

EG — F2 EG — F2
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whereas the Gaussian curvature and the Gauss méaoé given by

K = ¢ and N = Xu X Xy
" EG - F2 - JVFZZEG’
respectively.

Now, using the Weingarten equation (14) we get

— 1
X, = ——N X N,, Xy, = —N x N,
u \/j v v \/j u
or equivalently
—1
X, = ——N x N,, 15
V4 m V4 ( )
and so the immersion can be recovered in terms of the Gaussian curvature and the Gauss

map.
As in the case of positive Gaussian curvature, the Gauss map determines, up to multipli-

cations by positive constants, the Gaussian curvature of the surface. In fact{15inge

gets fromX,; — Xz = O that

N x (K;N, + KzN; —4KN_;) =0, (16)
whence
(log K):N; + (log K)zNz = 4(N.z — (N7, N)N). (7)

Now, by taking the inner product of both terms ({t7) by X, and using agairf15), we
finally have

det(Ns NZ? NZZ)

—(logK), =4 .
(log £): det(V, N., N7)

We summarize all the comments above jointly with more geometric information about
the surface in the following theorem.

Theorem 9. Let X : M —> L3 be a timelike immersion with negative Gaussian curvature
K, N its Gauss map and z = u + iv a conformal parameter on M. Then X can be recovered
in terms of K and N as

—i
v—K
and the Gaussian curvature is determined, up to multiplications by positive constants, by
the Gauss map in the following way:
det(v, Nz, N,7)
det(V, N, N7)

X, =

N x Ng, (18)

—(logkK). =4 (19)
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Moreover, the first and second fundamental forms of the immersion are given by

1 — —
I= —(=(N:, No) de® + 2N, Nz) de d = (N, Nz) d2?),
—2i _
II = ﬁ det(V, N,, N7) dz dz (20)
and its mean curvature by
N;, Nz,
H = 2iy =K — N Ve) (21)

det(V, N, N2)’

Proof. The expressions faX, and (logk), have already been obtained. E2Q) follows
easily from(15). Finally, (21) can be obtained usin@0) and thatH = e¢(E + G)/(EG —
F?),K =¢?/(EG — F?). O

In the following theorem we show under what assumptions a Map/ — S% from
a simply connected Riemann surfafedetermines a timelike immersiaki : M —> L3
with Gauss mapv.

Theorem 10. Let M be a simply connected Riemann surface and N * M — S% a differen-
tiable map. Then, there exists a timelike immersion X : M —> L3 with Gauss map N and
such that the structure given by its second fundamental form is the one of M if and only if

— idet(V, N, N7) > 0 (22)

(det(N, Nz, Nzg)> _ <det(N, N, Nz?))
z z

= 23

In this case, the immersion is unique (up to similarity transformations of L3) and can be
calculated as in Theorem 9

Proof. If X : M —> L3isatimelike immersion with Gauss mauch thatlis a Riemann
metric onM, the direct implication follows fronTheorem 9The converse implication is a
straightforward computation, bearing in mind ti22) says thafl is a Riemannian metric
onM and(23)is the integrability condition foK.

Finally, if X andY are two timelike immersions as above with Gaussian curvakifes
andKy respectively, then frorfil9) we have thaKy = A Ky for a positive real constan,
and hence, usin(l8), we have that = vAX + V,V e LS. O

5.1. Negative constant Gaussian curvature surfaces

Let X : M —> L3 be a timelike immersion with negative constant Gaussian curvature.
If we consider onV a conformal parameter= u + iv, (16) says thatv x N,; =0, and
so the Gauss mapis harmonic intd2. Conversely, itV is harmonic we get fror(il9) that
K is constant. Thus, we can state (§&§ the following corollary.
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Corollary11. Let X : M —> L8 be atimelike immersionwith negative Gaussian curvature
K. Then K is constant if, and only if, its Gauss map is harmonic for the second fundamental
form.

In the case whe is a simply connected Riemann surfagdeorem 1Qallows us to
obtain the following corollary.

Corollary 12. Given a harmonic local diffeomorphism N : M —> S% preserving the
orientation from a simply connected Riemann surface M and a negative constant K, there
exists a unique timelike immersion (up to translations) with negative constant Gaussian
curvature K, Gauss map N and such that the structure induced by the second fundamental
form is the one given on M.

Proof. This follows immediately by observing that the harmonicityNamplies that(23)
holds. On the other hand, singgis a local diffeomorphism preserving the orientation, it
follows that(22) also holds. [
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